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Abstract 

Classical constrained systems can be obtained by symplectic reduction. Many of these, including 
Yang-Mills fields and gravity, are singular. The presence of singularities causes great difficulties in 
quantizing the systems. only because the quantized Hamiltonian is not essentially self-ad,joint on 
its natural domain. A new approach, quantization via Rieffel induction, which is known to be the 
quantization of classical symplectic reduction, is used. This method is explicitly applied to many 
singular examples studied in the literature. In each case, this new approach correctly produces a 
well-defined, completely specified reduced Hamiltonian and reduced state space. We then study the 
reduction of T*G by the adjoint action of G (taking G = SU (2). SU(3) as concrete examples). This 
comes from Yang-Mills theory on a circle. Again, the reduced (i.e. physical) quantum Hamiltonian 
and quantum state space are explicitly obtained. In particular. the reduced Hamiltonian is shown to 
be defined by Neumann boundary conditions. 

Subj. C/n.ss.: Quantum field theory 

1991 MSC: SSF06.8lSlO. 8lQlO 
Kr~wwrd.x Quantization: Singular symplectic reduction; Rieffel induction 

1. Introduction 

There has been a long history of studies of the quantization of constrained mechanical 
systems, starting with Dirac. Field theories, such as Yang-Mills and general relativity. can 
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be elegantly formulated as infinite-dimensional constrained systems [2,15]. The so-called 
symplectic reduction procedure obtains the reduced space of physical degrees of freedom 
and the reduced (i.e. physical) observables from the corresponding data of the unconstrained 
system [1,3]. 

In many physically interesting cases. including gravity and Yang-Mills, the classical re- 
duced configuration and phase space contain conical singularities [24,19] and boundaries. 
These cause great difficulties in quantization. Some work has been done on the possible ef- 
fects of these singularities upon quantization [8,9,17]. In this paper. we use a new approach 
to the quantization of constrained systems with singularities or boundaries based on the 
use of Rieffel induction. We shall show that this approach is both systematic and effective 
in dealing with singularities; a systematic comparison with other approaches will not be 
attempted here. though we will comment on a case by case basis. 

Rieffel induction is an operator-algebraic procedure for inducing representations from 
sirnple data. Landsman showed that Rieffel induction is the exact quantum counterpart of 
the classical symplectic reduction [ 181. 

Based on this observation. our prescription for quantizing constrained systems will there- 
fore consist of: 
(1) Quantize classical data and constraints for the unconstrained classical system. 
(2) Use the quantum data obtained in C I) to perform Rieffel induction. yielding quantum 

data for the quantum constrained system. 
In the present context, classical singularities only emerge as a result of imposing con- 

straints (which are smooth themselves) on the unconstrained classical data (which are 
smooth as well), hence our procedure does not ‘see’ the classical singularities. This does 
not mean that we leave the singular points out, as in some approaches [8,9,17]. 

While Rieffel induction quantizes general symplectic reduction. in this paper. we shall 
restrict ourselves to its application to Marsden-Weinstein reduction. For a detailed intro- 
duction on Marsden-Weinstein reduction consult [ I]. 

Let (S. WY) be a symplectic manifold, and G a Lie group (whose Lie algebra is denoted 
by (1. with dual (I* ). Further, a smooth strongly Hamiltonian group action 4 : G x S --f S is 
supposed to be given so that its associated momentum map J : S + Q* is Ad*-equivariant. 
There are very general conditions which ensure the existence of such momentum maps. Let 
0,,, be a co-adjoint orbit containing m E g*. The choice of a co-adjoint orbit implements 
constraints. The constraint set is then J-t (0,?,). The reduced phase space at the given 
constraint level is 

J-‘C?,,,/G ” Jp’(m)/G,,,, 

where G,,, is the stability group of nz. The zero-orbit ((0)) appears as a constraint in many 
Hamiltonian systems, e.g. general relativity and Yang-Mills theory [2,4,5]. In fact a ‘shifting 
trick’ can formally make any constraint appear as a zero-level constraint. We therefore will 
mainly study the zero-level case. If S = T* Q and the action of G on S is lifted from some 
action on Q, then we have 

<I-‘(0)jG ” 7-*(Q/G). 

given mat the quotient manifold Q/G is smooth. 



When the group action and the constraint level satisfy certain conditions. ./ i (c3)/cj will 

be a smooth manifold with a symplectic form induced from the original one by the reduction 

process. Unfortunately, such ‘ideal’ conditions do not hold in various physically interesting 

cases. Singularities can occur in both the constraint set .I-’ (0) itself. or as a result of the 

quotient by G. In both cases singularities occur at points with higher symmctrirs (than 

neighbouring points), i.e. their stability groups have higher dimensions. These points are 

frequently those that are physically interesting. In fact these are often the (relative) equilibria 

of the original system [ 19,201. Detailed discussions on these issues can be found in [ 3. I9.?9]. 
The reduced manifold is actually quite well behaved even if it is singular. In [ 29I. it 14 

proved that provided the group action is proper. the reduced space .I -‘(Cl)/&7 is alwab, 

stratified by symplectic manifolds. For the present work WC just need to know that it’ .I‘ 

is connected, then there is a unique connected open dense subset of J -’ (C))/G (termed 

mrr.ri~?~u/ stmt~rrn) that is a smooth symplectic manifold itself. i.e. the singular reduced \pace 

is basically a ‘good’ symplectic manifold with ‘lower-dimensional strata’ (houndari~~ and 

singularities) attached to it. 

Hence, when Q/G is singular. the relation J -’ (0)/C = T*(Q/G) continuch IO hc 

meaningful for an open dense subset of Q and an open dense subset of J-’ (0)/G. both 01 

which are smooth manifolds in the present setup. (From here on, if the reduced manifold 

Q/G is singular then any mention of the above relation will be in this sense.) 

The quantized versions of classical systems of this kind are highly relevant: most tinite- 

dimensional mechanical systems fall into this category: gravity and Yang-Mills tields are 

infinite-dimensional versions of the same situation [2,6. IS.21 I. 

In essence. the standard strategy in quantizing systems of this kind ia to quantize the re- 

duced classical system on the maximal stratum directly, and then study the resulting q~~an~urn 

system 191. As a result of leaving out the singularities, the naively quantized Hamiltonians 

are usually not essentially self-adjoint (e.s-a.) on their natural domain. Therefore, it ih nec- 

essary to study the family of self-adjoint (s-a.) extensions. Each extension corresponds to 

a different quantum system and each defines, for example. a different scattering theory. In 

this approach. there is no good theoretical reason to exclude any of them and yet only one 

is physically correct. 

By solving certain concrete problems. we demonstrate that the quantization scheme based 

on Rieffel induction does not have these defects. It is more effective in handling 4tuations 

with singularities. Furthermore, the procedure is mathematically well defined. 

In Section 1.2. we shall introduce Rieffel induction in the present context and develop 

its properties. 

In Section 2, we shall carry out more explicit reductions in the context of proper and 

isometric group actions. The results will be directly applicable to a wide class of problem\. 

including the examples treated in the subsequent sections. 

In Section 3, we shall apply this technique to a selection of classical singular reduction 

problems studied in [3.19]. We include the standard reduction of T*1W” by SOOr). the mo\t 

straightforward classical system containing singularities after reduction. There will be an 

example of Sniatycki and Weinstein 1301 to demonstrate the striking difference between 

our method and theirs. 



176 K.K. Wren/Joumul of Geometry and Physics 24 (1998) 173-202 

In Section 4, we study dynamics on the quotient manifolds G/Ad-G, where G is a 
compact, semi-simple, simply connected Lie group. The cases of SU(2)/Ad-SU(2) and 
SU(3)/Ad-SU(3) are explicitly treated for concreteness. This is motivated by the fact that 
the dynamics of 2-D Yang-Mills fields on a circle with structure group G reduces to dy- 
namics on G/Ad-G [6,21]. The problem has been treated by many authors. In one way 
or another, the physical quantum Hamiltonian has been formally obtained. However, the 
precise domain of the reduced Hamiltonian has not been derived. It is difficult to obtain 
because of the singularities in G/Ad-G. Together with another paper [31], we show that 
Rieffel induction provides an attractive, mathematically rigorous framework for the quanti- 
zation of such field theories, where the above issue and many others (e.g. the precise analytic 
structure of the group of gauge transformations) are cleanly dealt with. As a result, a math- 
ematically well-defined, completely specified quantized theory is obtained. In this paper, 
we concentrate on the issue of singularities and the reduced (i.e. physical) Hamiltonian. 

1.2. Quantizutiorz with Rieffel induction 

First let us set up the background, from which this quantization procedure emerges. Let 
the classical configuration space be a smooth manifold Q with an action of a Lie group G. 
The phase space S = T*Q carries the lifted action $ of G, with equivariant momentum 
map J : T*Q H g*. The constraint is in the form of J = m, m E g*. The reduced phase 
space is J-‘(O,,)/G, where 0, is the co-adjoint orbit containing m. 

We can quantize the unconstrained classical data in the standard fashion. The quantized 
unconstrained phase space is ‘FI = L’( Q, dp), [ 11. For simplicity, we assume the existence 
of a G-invariant measure p on Q. If @ E ‘N and I#J~ is the transformation corresponding 
to a E G under action 4, the representation U(a)+ = q o @,-I quantizes the classical 
group action. When the classical group action on the phase space S is not lifted from Q, 

the representation U is given by ei6’J where j is the quantized momentum map, and c are 
coordinates in the Lie algebra [ 121. 

To understand the quantization of the constraints we have to bring in the broader per- 
spective. The classical constraint algebra is the Poisson algebra C”(n*). Its quantization 
is C*(G) [28], the convolution algebra of compactly supported continuous functions on G, 
completed in the C*-algebra norm. Classically the inclusion map i of the orbit 0, into (I* 
induces, by pull-back i”, a representation of the Poisson algebra C”(CJ*) in C?(O,). This 
is quantized by the situation in which the quantum constraint algebra C*(G) is represented 
in the C*-algebra of bounded linear operators on a Hilbert space. Such representations rr 
are in l-l correspondence with the unitary representations U of the group G on that Hilbert 
space [24]. It is in this sense that we say that the classical constraint O,, ~-t g* is quantized 
by an irreducible unitary representation U,(G) on a Hilbert space Xx. Further, the mo- 
mentum map J : S -+ g* is seen as a classical representation J* of the constraint algebra 
Coo(g*). This is similarly quantized by the unitary representation U of G on ti, regarded 
as a representation of C*(G). To summarize, we have 

P(S) c c”(g*) -2 C”O(U,,,), C(X) g C*(G) 2: L(3-1,). 
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where C( .) denotes the space of linear operators on a Hilbert space. Classically, the so-called 
weak observable algebra is the Poisson commutant of the sub-algebra formed by the image of 
the representation J* of the constraint algebra in Cc<i(S), i.e. the space of functions invariant 
under the action of the group on S. Likewise, the weak quantum observables are represented 
by the commutant of the operator-algebra representing C*(G) on ti. Equivalently. the 
operators in the weak observable algebra commute with any operator of the form U ((I ). t( E 
G. (All of the above can be found in [ 181.) 

The above quantized data for the unconstrained system is precisely the input data of 
a construction called Rieffel induction, discussed in [10,27]. We will just recall its basic 
constructions in the present context. 

Typically, the input data consist of two C*-algebras A, B with left, right representations. 
respectively, in the space of linearoperators C(L) on L, where L is a linear space. In physics. 
L is a (pre) Hilbert space. Its completion is the quantized unconstrained phase space. 

The algebra A is to be the quantization of the classical weak observable algebra. It can 
also be an algebra of unbounded operators representing observables. which needs more care 
with the domain of definition of the objects involved. We shall state the Rieffel induction 
procedure for bounded observables for the moment, and the slight difference in dealing 
with unbounded observables is mentioned afterwards. 

The algebra B is the quantization of the constraint algebra, i.e. C*(G). It has a representa- 
tion xX on a certain Hilbert space ‘Hx. This representation ny corresponds to an irreducible 
unitary representation U, of the group G on tiFI,. The aim is to construct a representation 
for A on some new Hilbert space RX. which turns out to be the quantized reduced phase 
space. 

The key is a sesquilinear form, which takes values in f3 = C*(G), called rigging map 
( . )B from L x L to B, satisfying the conditions defining sesquilinear forms. as well as 

(4. Ilr@a = (4, @)aB and (A@. 1cl)o = (4. A*ti)s (1.1) 

for all 4, J/J E L and A E A, B E B. 
If rX ( (C#I 4)~) 1 0, V@ E L then we do the following: 

(1) L 6~ ‘Ft, with ( , )O s.t. 

(4 @ u. $ @ w)o = (Jr, ((lcI. @)a)u, uJ)tix. 

This is positive definite [IS]. 

( 1.2) 

(2) Quotient L @ %, with the kernel Nu of ( , )o, and complete it in the norm derived 

from ( . 10. 
(3) The completion gives a Hilbert space ‘Hx, carrying a representation ?IX of any weak 

observable A E A, given by the representation defined by 

xx (A)[$ c3 ul = [A$ C3 ~1, (1.3) 

where$@u E L@%,,and[...]: LB%, F-+ C @ FtFI, /ni,. This representation is 

well-defined. 
Without mentioning any subtleties, we apply the above to the problem in hand. Let dg 

be an invariant measure of G, for convenience (if assuming otherwise, then insert modular 
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function appropriately). Then the sesquilinear form required is given in [ 181. In our case, 
we have 

xx ((@I 9 @2)a) = 
s 

dN(gllCI2, lcrOxUx(g). (1.4) 

G 

dense 
We find a suitable subspace L c ‘H, on which the above is well-defined. Then form 

the space L @ ‘Xx. (In case of compact G, L can be taken as 8.) 
Given @t @ u 1, $2 @ u2 E L @ Xx, by substituting ( 1.4) into ( 1.2) we have 

(Ilrlc3~l,~2@~2)0= 

(i 

dg(U(g)lCrl, Ilr2hUX(g)uI, ~2 . (1.5) 

G 71, 

Consider the example where G is compact. We have 

s 
dg(U(g)$r 9 $2MUx (gblt u2j7-1, 

G 

= 
s 

MU @ u, (g)M @ UI , +2 8 ~2)~~~~. (1.6) 

G 

Remark. If the constraint is at the zero level, then Rx is C and U, is trivial. In that case the 
inner product in the above integral reduces to the one on 3-1 alone with U’S left out. On the 
other hand, for general constraints we could always re-define U 63 U, as U’ and l-l @ l-tx 
as ‘FI’. Hence any constraint can be formally shifted to a zero-level constraint. This is a 
remarkable quantum analogue of the classical shifting trick. 

Let ptd be the orthogonal projection onto the subspace of ti@?f, that transforms trivially 
under U @ U, . By a well-known property of compact groups, (1.6) can be expressed in 
terms of &. For 9 E ?t @ Rx, we have 

(% 3 p2c/2)0 = (4dp1, ftd~2y2)7-1@Hx. 

Immediately, we have 

(1.7) 

(L @~FI,)/.% ” pId(L @&I. (1.8) 

The completion of L @ Xx/No in ( , 10 gives tix = &j(ti @ ?i,). Note that had we 
chosen L = ‘H, we would have obtained the same result. This choice is only possible 
for compact groups. In general (precisely when Dirac’s constrained quantization formalism 
breaks down), the linear space L often needs to be carefully chosen (see [ 181 and Section 3.1 
for this point). 

The reduced quantum observable, i.e. the representation XX(T) = TX of a weak ob- 
servable T on ?iX , is given by (1.3). Generally, in the case when T comes from a weak 
observable algebra and TX is bounded, the domain problem for TX is trivial, and TX is 
guaranteed to be s-a. 
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We are mainly interested in the case where the observable T is an unbounded operator 
with domain D(T). Then the domain of the reduced observable is also defined by ( I .3). 
namely the largest subspace of ‘l-Lx on which (1.3) is well-defined. It is easy to see that 
the reduced observables are at least always symmetric, cf. ( 1.1). We emphasize that in the 
Rieffel induction approach, the domain of any reduced observable is rigorously detined. 
and that its self-adjointness is a very tractable and well-defined mathematical problem. 

In the above compact group case, since Ptd and observables commute. the reduced ob- 
servable is simply the restriction of the representation T 8 0, of T on 7-L 18 71FI,. to the 
subspace 1-i”. That is 

TX = (T @ 4J~,~(~cm~). ( 1.9) 

In this case the domain of the reduced observable is simply 

Self-adjointness or essential self-adjointness on the above domain can be proved directly 
as a simple exercise for the reader. It also follows from a theorem of Nussbaum 1221 on 
self-adjointness, which can be generalized to include essential self-adjointness (the proof 
can be obtained from the author on request). 

When G is not compact, all of the above still applies. The only difference is that &%, 
which is still the Hilbert space of G-invariant states. is now no longer a subspace of 7-1. 
cf. Sections 2.4 and 2.5. The only crucial requirement for Rieffel induction to work is that 
the symmetry group should have a measure with certain properties. ’ 

Note, then, that so long as the observables are given for the quantized unconstrained 
system. Rieffel induction will guarantee that the reduced observables are also well-defined 
and completely specified, whether or not the reduced classical system contains singular 
points. In what follows, we say ‘s-a. domain’ for ‘domain of self-adjointness’. and. similarly. 
‘e.s-a. domain’. 

2. Radial part of an operator and Rieffel induction 

2.1. Some basic geometric concepts 

In a large class of problems that we shall encounter, the classical configuration space Q 
is a Riemannian manifold whose metric x is invariant under the symmetry group G acting 
by diffeomorphism on Q. By a theorem of Palais. the action is therefore proper [23]. For 
convenience we assume that the reduced space Qo = Q/G is connected. In addition. we 
assume that the group G is locally compact and unimodular. The unimodularity assumption 
is made for convenience, cf. [ 181. Without this assumption, we merely need to insert the 

’ We have demonstrated that even the infinite-dimensional groups of gauge transformations have the required 
properties [ 3 I 1. 
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modular function into appropriate places (e.g. into the definition of the unitary representation 
of G). 

The classical unconstrained free Hamiltonian is defined by the metric 

H(P, 4) = g’(q)@, P). (2.1) 

where q E Q, and J$ is the inverse metric, acting on the momentum vector p. 
Therefore, by a well-known quantization procedure (see [l]), the unconstrained free 

quantum Hamiltonian is the negative of the Laplace-Beltrami operator, denoted -A, of Q. 
In coordinate form, it looks like 

1 
-ak 0 g’“Jideto&, (2.2) 

where g ik is the inverse metric in coordinate form. 
It is e.s-a. on C,“(Q) if the classical Hamiltonian flow is defined for all times (i.e. 

geodesically complete) [ 11. We shall assume this to be the case. 
In this section we shall study what is termed as the ‘radial part’ of A. The techniques 

developed here will be essentially a generalization of Helgason’s treatment on invariant 
operators on smooth manifolds in [ 141. We shall see that the results will be highly relevant 
to the quantization of classical reduction at zero level of the momentum map. 

Helgason defined the radial part of any differential operator D as follows: 
Given some manifold M with a proper, isometric group action, we first define a transverse 

sub-manifold W of M as some sub-manifold satisfying 

(a) G . w n W = (w), 

(b) T,,,M = T, W @ T,(G w) (2.3) 
for all w E W. Then the radial part Do of any D is defined as 

D’flw = (D.f)lw 

for all locally G-invariant, smooth functions f’ on M. 
By definition, Do is defined on the set of locally invariant functions on M restricted to 

W. If W itself is a smooth sub-manifold, the set of functions obtained by restriction is the 
set of smooth functions on W. 

We shall extend these concepts to cases where M and W may only be the closure qf some 
munijblds embedded in some larger space. 

Under the assumption of proper and isometric action, the isotropy group of any q E Q 
must be compact [9], and the orbit G q can be identified with (i.e. diffeomorphic to) 
the homogeneous space G/G, [13]. In our case, the space G/G, is always some smooth 
manifold. There is an equivariant diffeomorphism between G/G, and G/G,!, if and only 
if G, and G,! are conjugate to each other [7,13]. 

An orbit is said to have type [HI, where [H] is the conjugacy class of a closed subgroup 
H of G, if the isotropy group of any points on the orbit belongs to the conjugacy class of 
H. An orbit through point q of Q is called maximal if the isotropy group G, is conjugate 
to a subgroup of every other isotropy group associated with the given action. If an orbit has 
dimension less than that of maximal orbits, it is said to be singular [7]. Apart from the two 
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types, there is also the so-called exceptional type, meaning that the orbit is not maximal but 
has the same dimension of the maximal orbits [7]. Since they will have the same treatment 
as singular types, we shall generally use the term non-muximul to describe all points having 
non-maximal orbit types, and use a tilde to indicate these points. We abuse the terminology 
a little to refer to the type of a point in Q and the type of an isotropy group. Note that an 
isotropy group of maximal type in fact is in a sense the smallest. 

Define QtH’ = {y E Q 1 G, is of type [HI}. Denote QcH’/G as QbH’. The sets just 
defined can be analysed on the basis of the concept of a slice. cf. Appendix A. 1. For proper. 
isometric group actions, at every pointy of Q. there exists a sub-manifold S, c Q. a slice 
containing y [4]. 

The existence of slices implies that each stratum Q (H) is a smooth (Riemannian) manifold 
[23]. Further, the stratum Q (“I that corresponds to points of maximal orbits, denoted as 

Q*. is dense in Q. cf. [9]. Let Q; = Q*/G denote the set of maximal orbits. The set 

Qo - Qg contains the non-maximal orbits. The reduced space Qh”‘. in particular QG, is a 
Riemannian manifold with a metric reduced from the metric on (2. Hence we see that Qo is 
‘pieced’ together by smooth (Riemannian) manifolds. These pieces are called strrrtcl. The 
maximum stratum Q; is connected, cf. 191. The quotient map x : Q H Q/G is smooth 
when restricted to each of the stratum Q (H) Consequently, a metric is induced for each 
stratum of the quotient space Qo. It is tempting to ‘extend’ this to a metric defined for (20 
as a whole. The problem is that the tangent bundle over QO is yet to be defined. Fortunately. 
the Riemannian manifold Q;S is dense in the reduced space Q() by the definition of quotient 
topology. This enables us to define some kind of tangent bundle over Qo. 

First. we can define a smooth structure on Qo. There are essentially two approaches 
[3,29]. The first one is to define the smooth structure via the quotient map K. 

C=(Qo)co, = If : Qo H R: .f’o r E C”(Q)). (3.4) 

Let us denote this structure as C”( Qo)co,. This set of functions will play an important 
role later. The smooth structure C”( QO)(OJ is isomorphic to the vector space Cx( Q)” of 
G-invariant smooth functions. 

The second definition of smooth structure (Whitney-smooth functions) may be used 
when the quotient space is embedded in some smooth manifold. in which case the smooth 
functions on Qo are simply obtained from restriction of smooth functions on the embedding 
manifold. We denote this structure as C”( Qo). This second definition may sound limited. 
but in [29] it was shown that a quotient space, such as the one we are interested in. can 
always be embedded into some Euclidean space. 

In defining a smooth structure on Qo, we have implicitly defined tangent bundles of all 
orders for Qo. On the dense subset QX, which is already a smooth manifold, the two smooth 
structures give the same tangent bundles (of all orders). Note that the Whitney-smooth 
structurecontains c”(Qo)(o~, sinceevidently CX(Qo)(o,IQ; C. C”(Q$) = C”(Qo)Ia;,. 

From now on, we use the following definition for a smooth map on the reduced space Qo: 

Definition. Any map r defined on Qo into Q is called Whitney-smooth if V,f‘ ??Cz( Q). 
,f‘ o r E C-(Qo,. 
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This is justified since such a map will be infinitely differentiable with respect to the 
tangent bundles defined below by Whitney-smooth structure. 

We now take a closer look at how the tangent bundles may be defined. Let us first define 
the tangent cone Ct~l Qo at [i] E Qo - Q;. The tangent cone can be defined as the limiting 
positions of all arcs in Qo linking [<I and [q], [q] E QG. This definition is used in [3] 
for singular points of a zero-level constrained set. Take an ordinary cone for example, the 
tangent cone at the tip is obviously all (3-D) vectors at the tip that lie outside the region 
enclosed by the cone and the negative cone obtained by extending the cone beyond the tip. 
Higher order tangent cones are similarly defined, with the help of T Q$, and so on. 

The set C[,lQo of tangent cone vectors, as it is defined thus far, may not be a vector 
space. However, due to the embedding mentioned above, we can borrow the topology of the 
embedding space and define the tangent space at the point concerned to be the linear span of 
the tangent cone at that point [3]. The resulting tangent space, which we denote as 7’,:, Qo, 
in general has a higher dimension than the quotient space. This way we can define a tangent 
bundle on Qo. Higher order bundles can be similarly defined, utilizing the embedding. 

The Whitney-smooth functions C”( Qo) are evidently compatible with this definition of 
tangent bundles. It is also evident that the maps which we called Whitney-smooth is also 
infinitely differentiable with respect to these bundles. 

Note that since QG is dense in Qo, a map r is Whitney-smooth on Qo if it is defined by 
extending some smooth map defined on Qz. 

2.2. The quotient space Qo as a generalized transverse sub-man@ld 

From Section 2.1, the root cause of the non-smoothness of Qo is the existence of multiple 
orbit types in Q. This is why the assumption of single orbit type is very common in many 
techniques in this field. We shall demonstrate how they can be generalized to multiple orbit 
type situations by generalizing Helgason’s analysis on invariant operators. The central idea 
is to construct some space M with a single orbit type, on which standard techniques apply; 
then pull the results back to Q. 

For simplicity of presentation, we shall first assume that the dense Riemannian manifold 
Q: is diffeomorphic to some transverse sub-manifold of Q*, also denoted by Qi, all points 
of which share the same isotropy group T (of maximal type of course), and the closure of 
which intersects any orbit once and only once. This is met by all the examples we shall 
encounter. The general case without the simplification is treated in Appendix A. 

Given the assumption, we can identify the quotient manifold Qo with the closure of 
the sub-manifold specified above. Let the identification map be t. It is a diffeomorphism 
when restricted to the dense subset Q;f. By the property of quotient maps and assumptions, 
the map r obviously is the closure of ‘IQ;, i.e. for any sequence [q,,] E Q$ such that 

lim,+,[q,,l = 141 E QO - Q,$, 

,,‘Fm t([q,,l) = r([<l). 

Such a map t is therefore Whitney-smooth on Qo. 

(2.5) 



In fact we have. for any [q] E Q,$ and s([y]) = y E Q*, 

W&,jQ;, = (T,(G q))‘. (2.6) 

For any non-maximal point [@I. r([ql) = 4 E Q - Q*. and vector X,4, E ClulQo. 

where [i] + Xlult E Qg, by definition of tangent cones. The above limit exists since 5 is 
Whitney-smooth. Note that (2.7) is nothing more than a defining equation for the tangent 
cone at s(lq]) = j in the set t(Qo) embedded in the manifold Q. Evidently, 7’s maps 
the tangent cone at [i] onto the tangent cone at (7. which must be contained in the space 
(7;i(G L/l)‘. Recall that the conical tangent space at (i is the linear span of the cone. 
Therefore we have Tr($$,Qo) C (Tq(G . ij))l. 

Notice thatthemap T(Ts)can bedefinedsimilarlyon thesecondorderbundle T”(TC‘ Q(,). 
and so on. 

The map Tr induces a metric. denoted g. on QO by 

<?(Xr,i. YI<,J) = fi(Ts(X~~j). TV). Xl,]. Y,,, E T&Q”. (3.8) 

The induced metric is non-degenerate on Qz, and may be degenerate on Qo - Q,$. The 
degeneracy will not affect the subsequent computation. Note that the metric so defined, 
when restricted to each stratum of Qo. coincides with the already well-defined reduced 
metric on that stratum. 

Remark. In general. we can only expect local diffeomorphisms from Qo into Q. But the G- 
invariance of the metric x still enables us to define a ~~lohnl metric on QO (cf. Appendix A. I). 

Now we construct a direct product space M, which can be mapped Whitney-smoothly 
onto Q. Such spaces will play a central role in our discussion. Let P be the homogeneous 
space associated with maximal orbits (i.e. P is diffeomorphic to some G/G,. y E Q*). Let 
us form the space M = Qo x P. Let M carry the (transitive) action of G. 

s. (IL/I. /7) = ([ql. L,y 17). s E G. [yl E Qo. p E P. (3.9) 

On M. there is only one orbit type. All the standard techniques apply on M, all we need is 
a way to pull the results back to Q. 

The tangent space (or cone) on M by definition is the direct sum of the tangent space (or 
cone) on Q(, and the tangent space on P. 

Proposition 1. There is u Whitney-smooth mup or ,from M = Qo x P onto Q 

Proof: As before, let r be the Whitney-smooth map from Qo into Q. Let K be a diffeomor- 
phism identifying P with G/G,c[~I,. Denote G,(lqlJ now as H. Note that for any (4 I E Q!. 
we can identify (r([cf]), K(P)) with G (I via a diffeomorphism z’, given by ,YH r([q]), 
g~j E K(P) f7.131. The overall map from [y] x P to G . q is then denoted as TT’ o (r. K). 
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Since H acts trivially on s(Qz), rr’ o (r, K) is well-defined for all points in QG. Hence 
the definition of K is independent of [q]. Thus rr’ o (r, K) is globally a diffeomorphism. For 
[i] E (Qu - Qi), by definition t([@]) = i is the limit of some sequence {r ([qll])). Further, 
G+ contains H. Therefore, the map rr’ o (t, K) is well-defined even on (Qu - Qz) x P as 
the closure of the map on M* = Q* x P. Hence the map fs’ o (t, K) is Whitney-smooth 
from M onto Q. Let us denote it as rr. 0 

We sometimes refer to this map as a projection since it is reminiscent of the projection from 
a plane onto a sphere. The projection, being Whitney-differentiable, pushes tangent spaces 
of M onto some corresponding tangent spaces on Q by Trr. In fact, for any ([q], p) E M* 

so thatn(([ql, P)) = q E Q, TX = Td(S([q~),K(p)) 0 (Ttliql, TKI~,), one has 

W7-,;, Qo CD T,(P)) = V,(G . q))’ @ T,(G .q), (2.10) 

where T,:, Qu = Ttqt Qu here. The first component comes from the map Tt acting on the 
tangent spaces of each Qu x (p], and the second component is obvious from the definition 
of rr’ above. For any ([;I, p) E M - M* with n(([q], p)) = @ E Q, one has 

TC,;,Qo @ TP(P)) = M’,;,Qo) @ T,-(G . 4,. (2.11) 

The map Tn always has non-empty kernel on points in M - M* since (I is non-maximal so 
dim T< (G . 4) < dim Tp( P). Also, the map x when restricted to M* is a diffeomorphism 
between M* and Q*. 

For any p E P, the space Qo x {p}, denoted as (Qu, p), satisfies the following conditions: 

for any ([ql, PI E (Qo, ~1, 
(a) G. ([ql, PI n (Qo> PI = {([ql, p)lt 

(b) %I PJM = Gil P) ((Qo, P)) @ T([y~.p)(G ([sl, ~1). (2.12) 
These conditions would define ‘transverse’ sub-manifolds [ 141. The dense subset (Q;F, p) 
is indeed transverse in M* in the conventional sense. We shall extend this notion by calling 
(Qo, p) transverse (in M), although Qo may contain singularities. In the more general 
setting of the appendix, we have the same extended concept of transversality. 

2.3. The induced measure on M 

The projection x induces a metric on M, defined by g o TX, where K is the original 
metric on Q. Let us also denote the induced metric by g. 

Remark. In general, the projection rr can only be locally smooth, however, we still can 
induce a metric by the G-invariance of this metric (cf. Appendix A). 

Since M = Qo x P is a direct product space, we have 

Hence 

g([ql, PI = sI713 P> CB YU41, PI. (2.13) 
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From (2.8), (2.10), (2.1 I), i must in fact coincide with i, which depends only on [q]. 
From (2.11), the induced metric I: is degenerate on M - M*. The dense subspace M* is a 
Riemannian manifold diffeomorphic to Q*. 

Let d[q] denote the Riemannian measure from j([q]). and let da ([q], p) denote the mea- 
surefromy([q],p).Theinducedmeasure dmonMisthereforewrittenas d[q]da([q]. p). 
which satisfies d[q] do([q], p) = dg o TT. Consider q E Q*. On the one hand. the orbit 
G q c Q* inherits a Riemannian structure from Q. The corresponding Riemannian mea- 
sure is of course invariant under G. The diffeomorphism identifying G .q with the manifold 
([q]) x P, denoted ([q]. P), gives the metric structure 1/ and the corresponding measure 
do([q], p) to ([qj. P). On the otherhand, ([q], P) can be identified with the space P. How- 
ever. P has a unique invariant measure dp, up to a constant. The uniqueness then implies 
that do([q], p) = p([q]) dp, where p is called density function [ 141. The argument can be 
applied to the manifold ([@I, P), [{I E Qo - Q;l,. Note then that p([q]) must be zero for 
[ql E Qu - QX, because of the degeneracy of the induced metric y( [il. 17). 

2.4. The rudial part of the Luplaciatz otz Q 

The first consequence of the discussion is that the Hilbert space L’( Q. dq) is naturally 
unitarily equivalent to the Hilbert space L’(M. da), which in turn is naturally equivalent 
to L’(Qo. p([q]) d[q]) @I L2(P, dp). To see this, let us take the set C’(?( Q*) of compactly 
supported smooth functions on Q*. which is dense in L’(Q*. dq). Under the pull-back rr* 
of the projection rr, the image of C,?( Q*) is denoted as rr*C,? (Q*). Since x is a diffeomor- 
phism on M*. n*C(?(Q*) is simply C,?(M*). The map preserves both the L’-norm and 
the supremum (11 . 11,) norm. We can then extend rr* to L’(Q*. dq). The statement then 
follows due to the fact that L’(Q*. dq) = L*(Q, dq) and L’(M. dv) = L’(M*. dc). 

Note that L2( Q, dq) is the quantum unconstrained state space (Section I .2). We shall 
now transform all the essential physical objects into L’(M. dm). 

Under the isomorphism rr*, the original Laplacian A is transformed to A, 

A * cil* = TI* o A. (2.14) 

Recall that A is defined on C,?(Q), and such A is e.s-a. By definition. A, is e.s-a. when 
defined on rr*C,?‘( Q). 

Remark. The space x*C,~( Q) andrr*P( Q) are vector spaces isomorphic to Cp( Q) and 
C”(Q), respectively. They play an important role in our calculation. The smooth structure 
Cm(M) on M can often be intrinsically defined, such as the Whitney-smooth structure. In 
that case, rr*P(Q) will be a subset of it. 

It is not hard to see that when restricted to M*. such a Hamiltonian A, is precisely the 
Laplacian defined by the metric induced on M*. We cannot simply extend such a Laplacian 
to the entire M since the induced metric is degenerate on M - M*. If we formally define 
it according to Eq. (2.2), the expression of such a Laplacian is meaningless on points 
in M - M*. However, by defining the Laplacian as in (2.14), we in effect find a space of 
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functions, namely JT*C~ (Q), on which the action of the Laplacian defined by the degenerate 
metric of M remains meaningful even on points in M - M*. One special case of this is the 
ordinary Euclidean A and its polar coordinate form. 

We have extended the concepts of ‘transverse’ sub-manifold to include subsets such as 
(Qo, po) c M, where po is some given point on P. Write (Qo, po) as Qo for convenience. 
We can also define the radial part A! of A, as 

&lg, = (A*f)l~o, (2.15) 

where f is any invariant (or locally invariant) function belonging to n * Coo ( Q). We denote 
the set of such functions by T*C”(Q)~. (Note that since the projection n from M onto 
Q is equivariant, we have (x*C”(Q))’ = n*(C”(Q)‘).) So the newly defined operator 
At is naturally defined for functions in r*Co3( Q)‘leo, which coincides with the space 
C”(Qo)co~ defined by Eq. (2.4) in Section 2.1. Note well that only n*Cco( Q)G 1~ is well- 
defined in general, while C”(Q)’ 1 Q” is only defined when Qo can be smoothly embedded 
in Q. See Section A. 1. 

Proposition 2. The radial part of the Laplacian A (A,) is 

At ZT p-‘/*AQo C, p’/* _ p-‘/2,4Qo(p’/2), (2.16) 

where Aa, is the Laplacian given by the metric S in (2.8). Furthel; it has e.s-a. domain 

C”(Qo)co, = ~*WQ)Gl~o. 

The proof of Theorem 3.7. of Chapter II.3 in [ 141 essentially applies to the first part of 
the proposition. The only difference is that our operators A, and At are not defined on the 
standard smooth function space which is no longer defined since M and Qo are not smooth 
manifolds. Instead they are defined on 71 *Co3 (Q) and Coo (Qo) (0)) respectively. In all other 
respect, the proof of [ 141 goes as before. The second part follows easily from the definition 
of A, and n*C?(Q) and the es-a.-ness of A on C”(Q). 

2.5. Application to Rkffel induction 

To see the relevance of the ‘radial part’ to our quantization procedure, we now quan- 
tize classical reduction at zero-level. The zero-level constraint is quantized by the trivial 
representation of G on YFI, = @. Eqs. (1.6)-( 1.10) apply. 

The reduced space then is ‘l-f x = P]dL*(Q, dq). We can unitarily transform this space 
by JC*. Note that n* and fid commute, because the projection n is equivariant, and 

that pld.f‘k) = & d, u(g)f(g) (cf. Section 1.2). We thus have n*PIdL2(Q, dq) = 

&‘r*L*(Q, dq). But n*L2(Q, dq) 2 L2(Qo, p([q])d[q]) 63 L2(P, dp) as shown in 
Section 2.4, immediately, the reduced (physical) quantum state space can be identified with 

L*(Qo> PUql) 4ql). 
Next, consider the reduced Hamiltonian A’, which is, by ( 1.9), equal to fid A. 
Apply the unitary transformation II* to (1.9); we have 
IT*A’ = n*(PIdA) = P,d(n*A) = PldA+. 
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Recall that d has e.s-a. domain C,?(Q). By (1. IO), the operator A0 is defined on 
&C(?( Q) and that it is e.s-a. Under the isomorphism r*, we have that n*A” is defined on 
n*f’IdC,? (Q), on which it is e.s-a. (Note that all this is consistent with applying Section I .2 
directly to n*L*(Q. dq) and n*A defined on n*C,‘(Q).) 

The operator Pld turns functions into G-invariant functions cf. Section 1.2. This means 
that fld(n*C,?(Q)) = x*C,?(Q)I~,, = C,X(Qo)(o,. This is an e.s-a. domain for T*A(‘. 
cf. (1.10). One glance at the definition (2.15) of the radial part will reveal that x*AO is in 
fact the operator At worked out earlier. By Proposition 2, an e.s-a. domain of AZ is 

De.\-a.(A:) = cp”(Qo,co,> (2.17) 

agreeing with the computation by projection &. 

3. Examples 

3.1. Free particle on a plane 

This simple example involves the additive group 1w. Sniatycki-Weinstein (301 and Arm- 
Gotay-Jennings [3] both treated the problem, but their results differ. Let us discuss the 
difference in the context of our treatment. 

Let the configuration space be Q = Iw*. The phase space is then S = T*(W* with canonical 
coordinates (q, p). R has an action defined by t p = (y + rp, p). The momentum map 
is then J(q, p) = 41~1~ = A(pf + pi) (i.e. the energy). The constraint is J = :m2. 
The classical reduction of this simple system is already tricky. Note that at rn2 = 0 the 
dimension of J-‘(VI*) suddenly drops from 3 to 2. The reduction at rn’ = 0 is singular. 

According to geometric reduction (a generalization of symplectic reduction cf. [3] to 
incorporate singular systems), the phase space of the system reduces to T*S’ when m’ > 
0. and to a point {0) when m * - 0 [3]. This result makes physical sense: also note the - 
sudden drop of dimensions here. 

Sniatycki and Weinstein [30] treated this system in the context of algebraic reduction, 
which they developed in order to quantize singular systems. It is a procedure to produce a 
reduced classical observable algebra. In this example, it gives non-trivial observable algebra 
for both rn’ > 0 and m* = 0, contradicting the result of [3] at m2 = 0. 

According to the method of Sniatycki and Weinstein the system at J = 0 is quantized by a 
system whose state space is made up by the solutions of the equation - (;)Iq, +ij’,, )$I” = 0. 
or (of + p:)$f’ = 0 in p-space. The solutions involve Dirac delta ‘functions’ which span 
the solution space. The use of Dirac delta functions leads to complications. 

We quantize the system by Rieffel induction. First, the unconstrained system: the uncon- 
strained quantum phase space is L2([w2); the unitary representation is Cl(t) = e(‘ll”“/‘): 
the classical co-adjoint orbits are single points which are quantized by H,,? = Cc with 
j7,,: (t) = epimZt/*. 
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For our induction procedure, cf. Section 1.2, choose the dense subspace L = C,(rW*). 
The rigged inner product on L @I l-f,,,2 = L @ C z L, by (1.5), is 

(+I 7 h)o = 
s s 

dt dpeiiP”‘$t (p)G(p)e@“‘t, 

R RI 

where $i E L. The rigged inner product ( , )o can be evaluated on L = C,.(rW*). The 
result (valid for all m*) is 

2n 

(VJ, @lo = (n/2) s dWW4* = m2>12, 
0 

where I@( 1 pi* = m*) evidently depends only on the direction 0. Hence the null-space 

No = (I/? E LIQ(IpI’ = m2) = 0). 
This implies that the reduced phase space 7-P’ (the completion of L/No) is L*(S’, dH) 

when rr* > 0. However, when m * = 0 the change is dramatic: here ‘FIX = @, which 
is different from the result of (301. This mirrors the drop of dimensions in the classical 
geometric reduction. 

Note firstly that for any m*, the reduced spaces turn out to be the direct quantization of 
the result of geometric reduction. Rieffel induction quantizes the geometric, rather than the 
algebraic reduction procedure. Secondly there is no problem about normalization of wave 
functions. We usually encounter this problem whenever we deal with quantum systems on 
non-compact configuration spaces. The usual way to deal with it is to introduce the Dirac 
delta function. It is what Sniatycki and Weinstein did. Here we showed a perhaps cleaner 
alternative. 

The calculation is immediately generalizable to any dimension. 

3.2. Angular momentum 

3.2.1. Direct computation with Rieffel induction 
We follow [3] for the classical reduction. Let G = SO(n) act on Q = R” by rotation: 

a E SO(n)actsonX = (~t,...,x,)~ E R” by X H ax. (When n = 1, the group is 
simply reflection about the origin, for which the discussion still applies.) The action is lifted 
to S = T*EP: if (pt , . . . , ~2) are the dual coordinates, a. (X, Y) = (ax, aP). With respect 
to the standard basis of the dual Lie algebra of SO(n), n* s R”, the momentum map J has 
COmpOtlelltS Jjk = Xjpk - Xkpj, 1 5 j < k 5 n. 

The reduction at J # 0 is regular. In that case, the reduced phase space is diffeomorphic 
to T*R+. However, when J = 0 we have a typical singular reduction situation. The reduced 
phase space is given by the cone R2/Z2, where Z2 is the discrete subgroup of SO(2) formed 
by the identity and rotation by rr. The reduced configuration space Qa = Q/G, which is 
[0, co), is denoted as R+. It has a singularity which is the origin (0) (but due to the low 
dimension it appears as a boundary). 
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Take II = 2 for example [19]. The equality J = 0 implies rr~2 = xzp). Thus. the 
constraint surface is M = J-’ (0) = {(X, P) E T*[W2 1 XII P). The subset defined by 
x2 = p2 = 0 intersects any orbit at exactly two points. This and the definition of M imply 
that these two points must be related by a rotation by rr. Hence the reduced phase space is 
So = J-’ (0)/G = [w2/Z2, which is a cone. 

This classical system certainly falls into the category treated in Section 2. The set of 
maximal orbits, denoted as QG in Section 2. is IL!+. which is self-evidently diffeomorphic 
to a (transverse) sub-manifold of Q = I?,“. This diffeomorphism carries over to the phase 
spaces: T*LW+ is diffeomorphic to Se - (0). 

The standard way to quantize this system at J = 0 is to apply some quantization procedure 
for the maximum stratum [9]. This results in a reduced quantum phase space of L’([W+) and 
a reduced Hamiltonian defined on domain P([W+). For 17 < 4. the Hamiltonian defined 
this way is not e.s-a., implying the necessity to study the family of s-a. extensions 191. 

We shall now quantize this system with Rieffel induction. All notations follow the con- 
ventions set up so far. For concreteness, we put 17 = 3. The case of general tt is virtually 
the same. 

We start from the quantized unconstrained system, which is 

‘Ft = L?(P). U(a)+ = $ 0 a-‘, 

where $ E IFI, (I E G = SO(3). 
The classical constraint may be any particular co-adjoint orbit O,fl~ E (I* labelled by 

tn2 E IX+, which has to be 1(1 + 1) (1 = 0. I, 2. . . .); otherwise quantization is not defined. 
cf. [ 11. The orbit 01(/+ 1) is quantized by the irreducible unitary representation (U/ . Ti/) of 
SO(3). We choose the standard carrier space UZ=?‘+’ = R/, isomorphic to the space spanned 
by the Ith family of spherical harmonics. 

By Section 1.2, the reduced quantum state space ‘FI’ is P/,(7-l 8 C”+‘), where P/d = 
1, d,e U @ rr/. an orthogonal projection from ‘FI @ c2’+’ onto the trivially transforming 
subspace. 

Since ‘,Y = L’(rW’) 2 L2(1w+, ,* dv) @ ($,, UZ”‘+‘). U can be decomposed as 0 @ 
$,’ ITS. We then have 8 @ @+I 2 L’(Iw+) @ (@,( @“‘+‘) @ c”+‘. However. 0E”‘+’ @ 
c3”+1 I’+/ 

= @L=,/‘-1, (lZZLf’ by well-known properties of SO(3). The space contains a trivially 
transforming subspace C only when I’ = 1. 

Hence the reduced phase space is 

ti’ = P/,(‘H @ C?‘+‘) = L’(R+) @ Ccl, 2 L2(R+, r2 dr-). (3.1) 

where C(l) 2 C is the trivially transforming subspace. 
Next, we work out the reduced Hamiltonian. We shall compute only the free Hamiltonians. 

since the application to other cases is similar. The unconstrained free Hamiltonian -A has 

e.s-a. domain D,,,-,, = C,?(oB’), s-a. domain D,-,. = {r,!~ E ‘FtlA$ E FL]. 

(3.2) 

where A$ is in the distributional sense. 
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By (1. IO), the reduced Hamiltonian is given by restriction to the subspace (3.1), which 
results in 

-A;. = - 
( 

n-l 
D;+- 

D_ _ /(I + 1) 
~ , 

1 
(3.3) 

r r2 

with domain DL,s_,. = P,t,(D,,,-,. @ @‘+‘) or Di_,, = P[,(D,-,, 63 C2’+‘). It is a short 
exercise to verify this directly, and to check that -Al on Dl_,, is indeed the closure of -AL 

on DLL 

3.2.2. Applying techniques in Section 2 and compare 
Let us apply Section 2 and see how it works out. First we need to form the space A4 = 

Qu x P, where P is the homogeneous space of the maximal orbits. In this case, P = S’ 
and Qu = lR+, so M = (w+ x S’. The smooth projection rr from M onto Q = [w”) is 
simply rr : (r, Q) E lR+ x S2 H x = n(r, fi) E R’ (i.e. the polar to Cartesian coordinate 
transform, where the spherical angle R parametrizes S’). As expected, rc restricted to 
M* = [w+ x S’ provides a diffeomorphism from M* to Q* = R” - (0). The induced 
metric on M is the usual polar form of the Euclidean metric. It is degenerate on (0, r;2) E 
M - M*. The decomposition (2.13) of the metric holds, where the induced metric on Qa 
is the Euclidean metric on R+. The factorisation of the measure dm into p([q]) d[y] d/, is 
the usual r2 dr dR. 

By Section 2.5. the reduced space is L’([w+, r2 dr), which agrees with the earlier re- 
sult. The unitarily transformed Hamiltonian -A, under rr*, as defined in (2.14), is the 
usual Laplacian in polar form. Its es-a. domain is, by definition, n*C,Y(R”). The re- 
duced Hamiltonian at constraint-level zero is computed from (2.16) which results in 
Dz + ((n - l)/r)D,.. agreeing with the independently obtained -A: in (3.3). The e.s- 
a. domain is C,?(R+)(a), by (2.17). 

But by (1.2) the es-a. domain at any constraint-level can also be written as 

Df.s-8. = P:,(C,!yR”, C3 u?f’). (3.4) 

Let us see how the two domains reconcile with each other. Any rr*C,?(R3) function 
can be approximated in 11 IIx norm by functions in C,?(Rf) @ $rC2’+‘. The super- 
script F indicates that only finite combinations are taken (this follows from the Peter-Weyl 
approximation theorem for compact groups). These approximating expansions form the set 

which we denote as 

a3 - C,Y(iR )(I) @ c2’+‘. (3.5) 

The intersection with n*C,?(R3) imposes conditions (which depend on 1) on C,Y(R+), 
hence the subscript ‘(I)‘. For instance, the fact that all n*C,?(R3) functions must be 
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constants at Y = 0 implies that functions in C,Fw(R+)(l+n, must vanish at r = 0. At 1 = 0. 
by definition, the set C,?(R+)(o, coincides with the set C,%( Q())(o, defined in (9.4). 

3.2.3. An explicit e.s-a. domain for the reduced Hamiltonicms 
To summarize, we have 

The first ‘dense’ is in the /I llm norm, while the second one is in the 11 II,.: norm. 
In fact, -A, defined on @f‘C~?(R+)(~, @ c”+’ IS also e.s-a. and has the same s-a. 

extension as -A, defined on rr*C,Y(E$). We shall call this domain D~~~!z,,. To prove the 
statement we only need to show that for any I/I t n*C,?(L@). there is a sequence $, in 

@c,V+)(,) @ @- “+I such that 

$i 4 $ and - A,$Q + -A,$ in the L’-norm. 

The second convergence follows immediately from the fact that the first convergence is 
in the 11 11% norm, and that -A,@ belongs to n*C,?(R’) as well (hence possessing a 
sequence of approximating expansions which is easily shown to be {-A, $,i ) ). 

The explicit form of Dz&, is very complicated. and differs for different dimensions. 
Fortunately. we know that LPI operutor that contains on e.s-u. opemtor while it itself’ is 
contained in the (s-u.) extension of that e.s-u. opercrtor must also be KS-N. out1 hcuv the 
strme SW. exter~sion. Hence we have a vast number of choices of explicit e.s-a. domains that 
lead to the same original (s-a.) Hamiltonian. For instance, we can choose 

(3.6) 

The above choice is valid for all dimensions (for n = I there is only the 1 = 0 case). 
However, condition (b) is only necessary for n = 2 since (a) implies (b) for all u > 2. 

Now plug De._+ into (3.4). at 1 = 0 the reduced Hamiltonian is 

e.s-a. on 

and at I > 0. it is 

-A;.=- 

es-a. on 
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When n 2 4, the standard choice of es-a. domain for all 1 is C,?@+). This obviously 
gives the same s-a. extension as ours, since it is contained in our choice of (e.s-a.) domain. 
When n < 4, the standard choice remains valid only for 1 > 0. However, for IZ < 4 at 1 = 0, 
this choice produces an infinite family of reduced Hamiltonians extended from that defined 
on C,X([W+), none of which can be excluded [93. In contrast, Rieffel induction produces a 
unique choice which extends to the well-known physically correct Hamiltonian, cf. [25]. 

3.3. Discrete group actions 

The above results can be used immediately to treat systems on iWn with a subgroup 
of SO(n) as symmetry group. Let us consider the case of discrete subgroup of SO(2): 
isomorphic to iZ,, , where m is the number of distinct elements of the discrete subgroup. The 
classical reduced space [w2/Z, is a cone. Systems on this cone appear in general relativity, 
cf. [8], amongst others. 

Classically, a discrete symmetry group can only lead to trivial momentum maps. Hence all 
reduction is constraint free [20]. The reduced classical phase space is therefore T*(rW2)/Z, = 
T*(rW2/Z,) [20]. The space iw2/Z, is a cone with the tip at the origin, and an opening angle 
depending (proportionally) on m. 

The effect of the classical singularity on the quantization of systems on such a cone is 
studied in [8,17]. The real root of the problem is that the singularity causes the formally 
quantized Hamiltonian to be non-essentially self-adjoint. In the standard approach, the 
calculation of the family of s-a. extensions should then be carried out, which is done in 
detail in [ 171, but which one of the extension is right is not clear in this approach. 

Rieffel induction applies to this problem exactly as to SO(2). The only difference is 
that the trivially transforming subspace (which will be our reduced quantum state space) is 
larger here. ’ The projection & picks out not only the L2([w+, r”-I dr) factor but also all 
the ‘angular factors’ (space spanned by the spherical harmonics on Sn-‘) that are invariant 
under the unitary action of &,, . 

Consider Z3 for example, the group generated by rotation by $7r on [w2. The classical 
reduced configuration space is a cone with opening angle in. Applying Rieffel induction 
we obtain the following: 

The reduced state space X0 is X0 = &L2(R2) 2 L2([w+, r dr)@ @, a)(3[), where @(3/) 

is spanned by h(O) = e i3’H 1 E Z. In other words, it is the L2-space over the cone with , 
the KY*-measure. The reduced Hamiltonian is the [W2-Laplacian restricted to X0; formally, 
it looks the same as the unreduced Hamiltonian. but with es-a. domain 

3 Another difference is that the quantum constraint can be any irreducible unitary representation of the 
discrete group. The parameters labelling the representations give rise to vacuum angles 13 I]. Only the trivial 
representation (vacuum angle = 0) is relevant to comparisons with other methods made here. 



K.K. Wren/Journal qf’Geornetc and Physic\ 24 (1998) 173-202 I93 

We see that the Hamiltonian is well defined. It is easy to show that the unique s-a. 
extension coincides with the Friedrichs extension. cf. [25], which is a special member of 
the family of extensions calculated in [ 171. Our result agrees with the choice of IS]. where 
the argument is made on physical grounds. 

4. Dynamics on G/Ad-G 

4.1. Preliminuries 

Let G be a compact semi-simple, simply connected Lie group, with maximal torus T and 
Weyl group W. Then G/Ad-G = T/W, cf. [13,14]. An example G = SU(n) will illustrate 
the ideas involved. On SU(n), the adjoint action is simply matrix conjugation. Every unitary 
matrix can be diagonalized by conjugation. This means that the adjoint orbit of A E SU(tz) 
must intersect the closed subgroup SA(n) of special diagonal matrices at least once. The 
closed subgroup SA(n) is a maximal torus T of SU(n). We can work out the geometry 
of the quotient space SU (n)/Ad-SU (n) by looking at the restriction of the Ad-action on 
T, which, by definition of W, is exactly the action of the corresponding Weyl group W 
on T. Notice that since eigenvalues are unchanged under conjugation, the conjugate action 
on T must have the effect of permuting the diagonal entries of matrices in T. In fact. for 
S.!/(n) (and U(n)), W = S(n), the permutation group of n elements, cf. ]13,14]. 

Let the classical configuration space Q be G, carrying the adjoint action of G on itself. 
Let T* Q carry the lifted action. This action is strongly Hamiltonian, with momentum map 
J [ 11. Without going into details, we just remark that this system when reduced at J = 0. 
classically produces J-‘(0)/G = T*(G/Ad-G), which is highly singular. The manifold of 
G has natural G-invariant metric g and measure dg . The unreduced Hamiltonian is defined 
by the invariant metric as in (2.1). We therfore have a well-posed mechanical problem, to 
which the techniques in Section 2 apply. 

A partial reduction of Yang-Mills theory on a circle is equivalent to the above hnite- 
dimensional unconstrained system [6,21]. A further reduction then produces the physical 
Yang-Mills theory, which is the above reduced system on G/Ad-G. Rieffel induction can 
quantize the 2-step reduction elegantly. 4 The quantization of the first step is done in [ 3 I]. 
Here, we shall ‘jump’ directly to quantize the second step, i.e. quantize the above finite- 
dimensional reduction, in order to concentrate on the singularity problem in the reduced 

space G/Ad-G. 

4.2. Ricjfel induction,for G/Ad-G 

We first quantize the unconstrained system: the unconstrained Hilbert space is L’(G. dl: ), 
carrying the usual unitary representation CJ : g H U (g),f’ = ,f o Ad,?- I ; the Hamiltonian 
is the Laplacian A on the manifold G with e.s-a. domain C”(G). 

’ Of course. we can also equivalently quantize the complete reduction in one go [ 3 I 1 
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All the machinery developed in Section 2 directly applies here. By Section 2.5, we obtain 
the physical quantum Yang-Mills theory on a circle: the physical Hilbert space is 

L*(G/Ad-G p(kl) dkl). 

where [g] E G/Ad-G, d[g] is the Lebesgue measure on G/Ad-G, and (p([g]))‘/* is given 
by Eq. (63) of Chapter II.3 of [ 141 in terms of the root system of the group; the physical 
Hamiltonian is given by (2.16) with e.s-a. domain P(G/Ad-G)(o) defined in (2.4); the 
eigenvectors of the Hamiltonian lie in C”(G/Ad-G)(o), and are the characters of the group. 

The es-a. domain for the reduced Hamiltonian can be given more explicitly. Notice that 
the space T/W = G/Ad-G is the so-called fundamental domain of the group, which can 
be identified with some compact convex subset of RrankG. In fact, it is a rank G dimensional 
polyhedron. It is a stratified space, in accordance with the theory set up in Section 2. The 
maximal stratum is the interior. The lower-dimensional strata include the (rankG - l)- 
dimension hyperplanes (walls); they are the walls of Weyl chambers; the intersections of 
the completion of walls form edges of various dimensions < (rankG - 1); the lowest- 
dimensional ‘edges’ are the vertices of the polyhedron. We may call any of these strata an 
edge since walls and vertices are extreme cases of an edge. 

Note that the walls, edges and vertices of the polyhedron are singularities as we defined 
in Section 2.1. For instance, vertices correspond to the smallest orbit type, the fixed points 
of the action of the Weyl group W on T, or equivalently, of the adjoint action of G on G; 
edges of increasing dimensions and walls correspond to progressively larger orbit types. 
The interior corresponds to the maximal type. We shall use a(G/Ad-G) to denote these 
singularities. Next, in order to express our theorem succinctly, we extend the concept of 
normal derivative as follows. 

Definition. At any point on an edge of dimension rank G - 1 -d, where 0 _( d 5 (rank G - 
1), we form the local cylindrical coordinates (Z, (r, a)), where Z denotes the Cartesian 
coordinates along the edge, and (r, 52) the polar coordinates on the d + l-dimensional 
hyperplane normal to the edge. The normal derivative at that point is the first order radial 
derivative in the above local coordinates. 

When d = 0, this coincides with the usual normal derivative; when d = (rank G - 1), 
the local cylindrical coordinates reduce to local radial coordinates, the normal derivative is 
simply the radial derivative. 

We have Whitney-smooth structure P(G/Ad-G) defined by restriction of smooth func- 
tions on Rrank ’ , cf. Section 2.1. The second smooth structure C”(G/Ad-G)(o), by dehni- 
tion, contains invariant functions. Because the Weyl group acts by reflection on the walls, 
the invariance implies that their normal derivative, as defined above, must vanish on the 
walls. 

Theorem 3. For Yang-Mills theory on a circle with semi-simple simply connected compact 
Lie structure group G, the physical Hamiltonian A’, given by (2.16) has e.s-a. domain 

Cm(GIAd-G)IN,u,,,, = 14 E CCU(GIAd-G)l~‘la(G/Ad_G, = 01. where #‘I~cG/A~I-G) i.7 
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the generalized normal derivative, and CCO(G/Ad-G) is the Whitney-smooth structure 011 
G/Ad-G. 

Proof If a symmetric operator contains an es-a. operator, then it must be e.s-a. with the 
same s.a extension. Denote A0 defined on Cw(G/Ad-G)(o, by Te.\+ and A0 defined 
on 

C’X:(GIAd-G)lwm,mn 3 C”(GIAd-Gho, 

by T,. Hence 7; > Te.s-a.. It is well known that the Laplacian A” involves up to second 
order derivatives, and its coefficients are at most singular to the order of lirn\+,~~ I/.r’, 
cf. [ 141. while the factor p([g]) in the measure is of the order .PnkG-‘. By simple order 
counting, we can show that T,. is well-defined in L’(G/Ad-G, p([g]) d[g]), and is indeed 
symmetric. n 

Let us now look at two explicit examples. 

4.3. Ri@el induction,fr,r SU(2)/Ad-SU(2) 

For SU(2), we have T = S(U(l)@U(l)) Z U(l), i.e. a circle. The action of the only 
non-trivial member of the Weyl group W = S(2) is a reflection with respect to a chosen 
diameter of the circle. There are two orbit types: two fixed points and the rest of the points 
(maximal type) whose W-orbits consist of two points. For a point of maximal type. its 
SU(2)-orbit is diffeomorphic to SU(2)/T since its stability group is T. 

The reduced space SU(2)/Ad-SU(2), or Qo in our notation, is therefore identified with 
an interval 7 = [0, n] with two distinct boundary points denoted also by e and -e, since 
they correspond to (the unit matrix) e and -e of SU(2). The set of maximal orbits Q6, or 
the maximal stratum, is the interior of the interval. 

In the construction in Section 2, we formed the space M = Qo x P. which is now 
7 x SU(2)IT. We can project M onto SU(2) by r : M 3 (t, UT) H a . t, where LI is any 
memberoftheorbitq.Thisidentifies M*(= I x SU(2)/T) with Q* = SU(2) - (e. -e). 
The above is obviously true from the fact that SU (2) is S” and SU (2)/ T is S2 (rather like 
identifying a ball without the two poles with a finite-height cylinder without the brims.) 

The metric of SU (2) induces a metric by the map 71. To calculate the corresponding 
factorized measure, we need to work out the density function p. The simple roots of SU (3) 
give p(r) c( sin’(t), if we choose t E 7 = [O. in], cf. [ 141. 

Hence from (2.16) 

-;(A’) = -(Df + 2cot(t)D,). (4. I ) 

Remark. This Hamiltonian is independently obtained formally in the context of Calogero- 
type integrable system, where it is called the physical Hamiltonian. and is expressed as 
-$(A) + V acting in the unreduced state space L’(G), i.e. the reduced system is seen as a 
result of the unreduced system with a potential [ 1 11. The potential is called the generalized 
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Sutherland potential. It can be verified that the potential in fact exactly cancels out the 
‘angular’ part of the free Hamiltonian on SU(2) and leaves us with (4.1). However, the 
issue of its self-adjointness has not been properly discussed. 

An e.s-a. domain of the reduced Hamiltonian A0 is given by the Neumann boundary 
condition (cf. Theorem 3), i.e. C”(T) Ivca~,=o. 

Remark. The eigenfunctions of the reduced Hamiltonian are the characters of the group. 
In the SU(2) case they are sin((21 + l)t)/sin(r), where 1 takes integer or semi-integer val- 
ues. Note that the characters belong to C”(T)N~~,,,~~~. and they do not satisfy the Dirichlet 
boundary condition, which is the boundary condition widely assumed in the study of quan- 
tum systems on an alcove (i.e. on G/Ad-G). The difference in the boundary condition is 
known to make crucial difference in the ground state of the system [26]. 

4.4. Rieffel induction,for SlJ(3)/Ad-SU(3) 

For SU(3), the maximal torus can be chosen as T = S(U(I)@U(l)@U( 1)). The Weyl 
group acts by permutation of the entries of the diagonal matrices. There are three orbit 
types: 
(1) three fixed points; 
(2) points with SU(3)-orbit diffeomorphic to SU(S)/S(U(2) @ U(1)); 
(3) points (maximal type) with SU(S)-orbit diffeomorphic to SU(3)/T. 

The quotient space Qo, i.e. SU (3)/Ad-SU (3) = T/ W, is diffeomorphic to an equilateral 
triangle, which we denote as {a): The three distinct vertices are the three stationary points; 
the three sides are points of type (2); the interior, the maximum stratum, QG, denoted by 
(A), are points of maximal orbit, type (3). 

Thus, the physical Hilbert space is ,5*((A), p(t) dt); the physical Hamiltonian is -A’, 
es-a. on C”((X})(o). 

To work out the explicit expression for -A’, we only need p(t), t E {a). It is convenient 
to use polar coordinates (r, 0) on Qo. Let us choose a polar coordinate system centred at a 
vertex, so that t H (r, 0) with 0 5 r 5 n and 0 5 8 5 irr. Then the Lebesgue measure 
on T is the usual r dr de. In polar coordinates, the function p(t) must have the form 

sin”(uur sin(o)) sin*(aur sin(8 + in)) sin*(aar sin(0 + in)), 

where aa is l/ sin( $r). This can either be calculated from the simple roots of SU(3) or by 
symmetry properties of p(t). We can write down the reduced Hamiltonian using (2.16), up 
to an overall constant factor 

2 

-A0 = - 0,’ + iDr + 2a0 c sin(8 + mrr/3) cot(agr sin(ti + mn/3))Dr 
m=O 

2 

+~(D~+2uor~ cos(0 + mx/3) cot(uor sin(8 + mn/3)) DH) . 
m=O 
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An e.s-a. domain for the reduced Hamiltonian A0 is again given by the Neumann boundary 
condition: COC(n)]g,iija)=o. 

Appendix A 

A. 1. Full treutment of Section 2 without the simpl$ying assumption 

In Section 2, we made the simplifying assumption that the maximal stratum Q; = Q*/ G 
of the reduced space Qu is diffeomorphic to a transverse sub-manifold of the maximal 
stratum Q* of Q. Let us now drop this assumption. As before, we shall indicate non- 
maximal points in Qa or in Q with a tilde. We shall always let G, denote the isotropy group 
of a point y and, use ‘[ 1’ to denote an element of the quotient space as well as an orbit. 

To proceed, we need to introduce a concept that is central to our discussion. A s1ic.e at 
y E Q is a sub-manifold Sq containing q satisfying the following criteria [7.12]: 
(1) S, isclosedinG.S,; 
(2) G S, is an open neighbourhood of the orbit G q: 

(3) G‘, s, = sq; 
(4) s S, n S, # B implies that K E G,. 

We will list some important properties of a slice [7.12]: 
(a) Some neighbourhood of q E Q is diffeomorphic to S, x B, where B is a local cross 

section over G/G, (i.e. the natural projection from G onto G/G, restricted to B is a 
diffeomorphism) containing the identity e. 

(b) q’ E S, implies G,J C G,. Under our assumption, G, is always compact, cf. Section 2. 
Thus, together with Proposition 1.9 of [7], we have: If q is maximal then G, acts trivially 
on S,. and S, intersects any orbit at most once. 

(c) The slice S, is a G,-space on which G, acts. A slice .S‘,, at q’ E S,, defined with respect 
to the slice S, as a G,,-space, is also a slice at q’ defined with respect to Q, a G-space, 
and &ICI, z (G . S,)/G c Qu. Further, in our context, the number of orbit types is 
locally finite everywhere in Q [9]. 

In the present context, S, can in fact be given by 141. 

S, := ]cxp(X,)IX, E (T,(G .4)?. IX,1 < ~1 (A.]) 

for suitable t > 0. Hence Tq (S,) = Tq (G q)‘. A slice satisfying this condition is called an 
q&ze slice. It can be identified with T,(G . q)‘. The dimension of an aftine slice is always 
dim(Q) - dim(G) + dim(G,). 

Lemma A.l. Any non-maximal point cj E Q - Q* belongs to the closure (in Q) of‘ some 

slice S, E Q*, such that the closure (in Q) of S, intersects cmy orbit at most once. 

Proof: Consider the slice Si at I$ E Q - Q*. The slice S, is a Cc-space, where i is a tixed 
point of the action. By property (c) above, any slice defined in SG is also a slice in Q, and 
any orbit in the neighbourhood of 4 has a counterpart in Sq. Further. by prescription (A. I ), 
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taking closures of subsets of S< in Q is the same as taking closures in S+, since (7” (G .cj))’ 
is a closed subspace of T< Q. Hence we can discuss everything in this (Riemannian) sub- 
manifold Si . 

Let us take any point of maximal type q E $ C&nse S,j sufficiently close to the point <. 
There exists exp(tX,), where 0 ( I 5 c and IX, 1 = 1, a geodesic, connecting 4 and q [ 11. 
An isometric action maps geodesics to geodesics, as well as preserves local distances. Thus 
together with the smoothness of the group action and the (local) uniqueness of geodesics, 
this implies that the segment exp(tXq) with 0 5 I < E must lie inside S;; the isotropy 
group of any points on the segment must be the same as the isotropy group G, of q; no 
two points on the segment belong to the same orbit (otherwise isometricity is violated). In 
fact this geodesic segment is contained in an affine slice, since by (A. l), it is evident that 
every small enough neighbourhood of any point on this geodesic segment is contained in 
some affine slice, on which G, acts trivially. Hence we can choose a sequence of points on 
the geodesic, converging to 4, such that the union S of the affine slice at each point in the 
sequence covers the geodesic segment. This union S satisfies the definition of a slice. 

Suppose the closure of S intersects some orbit 0 at more than one point. Let us denote 
these intersecting points by q,. There can only be countably many such points, by (A. I). 
Consider the neighbourhood NY, c S of qR, defined by Nq, = S,,: n S, where S,, is some 
small slice at q,. By property (a), the set Nq, contains all sequences in S that converge to 

qg. Nq, n Nqs, = CA since S,, fl S4,, = 8. Hence we can leave out all but one Nqn in our 
choice of S so that the closure of S intersects the orbit 0 only once. We can repeat the 
same procedure to any other orbits that intersect the closure of S more than once, without 
disturbing @ being in the closure of S, as long as we do not discard any points on the geodesic 
exp(tXy), 0 ( t 5 E, defined above. By this procedure, we will eventually be left with a 
choice of S, that satisfies the requirement. It takes only countably many steps, by property 
(c) and (A. 1). 0 

Proposition A.2. On Q& there is a map t, which is locally a d$eomorphism (i.e. 3 a 
neighbourhood around any point, on which ‘5 is difleomorphic),from QE into Q*. It can be 
locally Whitney-smoothly extended to Qo. 

Prooj We first note that there is a local diffeomorphism that maps Qz into Q* [9]. Take qi E 
Q* A small enough slice S,, can be identified with a suitable neighbourhood NC, 1 c QT, 
of [qi] E Qz. Let the identification be s; so that r; ([q;]) = qi. All points in r; (NL~,J) C S,, 
have isotropy group Gqi by property (b). Cover QG with sets like NC,, 1, we can then define a 
global map t that is locally defined as above. For consistency of the definition, we notice that 
the expression of the affine slice implies that in each intersection Ni,, 1 n NL,,, 1, the transition 
from diffeomorphism Si to tit (i.e. from a slice to another slice on the same orbit) is done 
via a smooth group action. In general, t cannot be made into a global diffeomorphism. (In 
short, Q* is a fibre bundle with base Q;, and typical fibre G/H, where H is any isotropy 
group of maximal type.) 

Next, we extend the definition of t so as to include the entire reduced space Qo. Find 
a small subset Ns, c Qz such that its closure Ncgl in Qo contains [q] E Qn - QG. It is 
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important to stress here that Ntyt may not contain all sequences that converge to the point 
[G], i.e. it is not necessarily a neighbourhood of [i] in Qn. ’ 

We define a local diffeomorphism r~ for NG, such that N& is identified with a slice 
S, c Q*. By Lemma A. I, it is possible to choose S, so that the closure of S, contains one 
and only one point (7 in the orbit [@I. Further, the closure of the slice S, can be made to 
intersect any orbits at most once. We extend the map rti 1 by continuation to the non-maximal 
points in the closure N,,I of Ncj,. 

(A.?) 

For this to be well-defined, we need to show that first, the required limit exists. and second 
the limit does not depend on the sequences chosen. 

By property (c) of slice, N],j can be identified with some St~t/Gtil, and ,$,I > S, = 
r; (NC;,) cf. proof of Lemma A. I. For any [y’] = lim,,_K [q,,]. the sequence ~i([y,~ 1) must 

at least converge to the orbit of 2 in S,. by definition of the quotient topology. This means 
that the closure of the slice S, = rtct(N&) must have non-empty intersection with any 

neighbourhood of the orbit of 2. But, any orbit in Si is compact since G[,I is compact. cf. 
property (b) and (c). Hence. the closure of S, = rtqt(Nci,) must intersect the orbit of i’ at 
some points: further, since the closure of the slice S, intersects any orbit at most once. the 
limit is unique; thus (A.2) is well-detined. 

The extended map ri is Whitney-smooth (cf. Section 2. I). This way we have constructed 
a map r which is locally Whitney-smooth for the entire (20. c 

The map r, being locally Whitney-smooth, pushes tangent spaces on Qu onto correspond- 
ing tangent spaces on Q. For any [q] E Qo. r maps either into or onto (T,(G r(q)))‘, as 
in Section 2. I. 

The map Tr provided us a metric. denoted j, on Q() by 

%Xlr,t. &I) = ,e(Tr(XI(,j). Tr(Ytqt)). (A.3) 

We deliberately dropped the index labelling the open sets on which local diffeomorphisms 
are detined. We see that the G-invariance of the metric g enables us to globally define a metric 
<jj on Qe via what are merely local diffeomorphisms: Suppose we have [q’] E (NI n Nl) c 
Qn. where N) and Nz are two patches on Qo where we defined our local diffeomorphism. 
Let r;(q’) = q;. i = I, 2, and qi = ~21 .q;. Then for X E qytlQu, Trl(X) and Tr)(X) 
are related by lim,,u(l/t)(g~t . (q; + Trl(X)t) - ~21 .q;) = T@Ic.v2,ty;j(X), where ‘0’ 
is the group action. But the metric g is invariant under TO, so the metric defined above is 
independent of the choice of local diffeomorphisms. 

As in Section 2, let P be the homogeneous space associated with the maximal orbits. We 
can form the space M = Qu x P, carrying the action of G based on the left translation of 
G on P (recall that P is diffeomorphic to some G/T, where T is an isotropy group of Q 

’ If Q(, is a cone, and I(jj is the tip, the neighbourhood of [Cj] is simply a small cone with the same tip: but 
the set A’,,, may only be half of the small cone. but containing the tip. 
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of maximal type ): g ([q], p) = ([q], L, . p), g E G, [q] E Qo, p E P. The (conical) 
tangent space on M by definition is the direct sum of the (conical) tangent space on Qu and 
the tangent space on P. 

Proposition A.3. There is a locally (Whitney-) smooth equivariant map TT from A4 = 
Qo x P onto Q. 

Proo$ For any [qk] E NL~,J c Qz, tk([qk]) x P, where Nlykl is the neighbourhood set, find 
a diffeomorphism Kk that maps P to G/G,(lq,l). Then we can identify (rk([qk]), Kk(P)) 
with G.qk. Theequivariant identification ?‘rL isgiven by gH .rk([qk]), gH E b&(P) [B]. Note 
that Gs(lyal) acts trivially on rk(N[qk]), which by definition, is some affine slice Ssl(14kl). 
The map ni o (rk, Kk) is therefore well-defined for all points in Nly,l, and is therefore a 
diffeomorphism on rk (N[,,l) x Kk (P). 

Consider the subset Ni c Qo containing non-maximal points, as constructed in the 
proof of Proposition A.2. Let N; c Q$ be its dense subset. We first have a diffeomorphism 
r’ o (ri, KG) defined on N; x P as above, where 54 is the diffeomorphism defined on N; 
and on NG by extension (cf. Proposition A.2), and KG identifies P with G/H, where H IS 
the (common) isotropy group of points in r~ (N;). Then rr’ o (r~, KY) is smoothly extended 
to all of Ni when we extend rq to the entire neighbourhood NG. We see that the map is well 
defined for all points of the neighbourhood, since the isotropy group of all points in r~ (Ni) 
is or contains H, and r~(Ni) intersects any orbit at most once. 

Let us cover M by subspace of the form Nk x P, where Nk is a subset of Qu, like 
the one above. We can define a smooth projection nk for each of the subspace, where 
nk is the composition ri 0 (rk, Kk), ?‘rL and Kk are as delined above. The projection j’rk is 
Whitney-smooth on Nly,l x P. 

Let us denote the overall projection, which is locally Whitney-smooth, as n. It is evidently 
equivariant (since all n; is). ??

For any p E P, the space QKJ x {p}, denoted as (Qu, p). satisfies the following conditions: 

for any ([ql, PI E (Qo, ~1, 

(1) G. ([ql, PI n (Qo, PI = {([ql> PII; 

C2) TC&l.pJM = %ll.P) ((Qo> P)) @ ~L~I.~)(G . (kl, P)). 

These conditions would define ‘transverse’ sub-manifolds [14], except that our (Qu, p) 
may contain singularities. Nevertheless, we shall call (Qo. p), which can be identified with 
Qa, transverse. Note that (Qz, p) is indeed transverse in M* in the conventional sense. 

The projection n induces a metric on M via the pull-back of r. In other words, the metric 
is defined as go Tn, where g is the original metric on Q. Again, although TIT is only locally 
defined, g o Trr is independent of the choice of local diffeomorphisms (the same as the 
argument for S). Thus the metric is globally defined. But again, it is degenerate on M - M* 
(cf. (2.11)). Let us also denote the induced metric by g. The decomposition of this metric 
and the factorization of the measure dm follow as before. 

The above discussion implies that the Hilbert space L*(Q, dq) is naturally unitarily 
equivalent to the Hilbert space L*(M, dm) = L*(Qo, p([q]) d[q]) @ L*(P, dp). It can 
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be shown as in Section 2, by taking the set C,?( Q*) of compactly defined locally smooth 
functions on Q*, instead of globally smooth functions. Under the pull-back TI* of the (locally 
Whitney-smooth) projection rr, the image of C(?(Q*) is denoted as rr*C,?(Q*). This map 
then extends to an isomorphism bewteen the two Hilbert spaces. 

Under the unitary map if*, the unconstrained Laplacian A is transformed to A, defined 
by (2.14). Recall that A can be defined on C,?(Q), and such a A is e.s-a. Since the set of 
locally smooth functions C,Y( Q) contains C,?(Q). and it is contained in the s-a. domain 
of A. we can use C(3c( Q) as an alternative es-a. domain of A. From Eq. (2.14). it is easy 
to see that A, is also e.s-a. when defined on rr*C,X( Q). 

Comparing this to the construction in Section 2, there is only one more complication. 
Namely. the image of any function .f’ E C(?( Q) under 7r* depends on the arbitrary choice 
made in constructing each local diffeomorphism from Qa into Q. Does that make A, more 
or less arbitrarily defined? Recall that the original Laplacian A is a G-invariant operator, i.e. 
A(U(g),f’) = U(g)A(,f), where CI(g) is the representation of G on L’(Q, dq) (detined 
as u(g)f = ,f o R-‘, cf. Section 1.2). But. in the notation of the argument following (A.3) 
and Proposition A.3. given [q] E (NI f’ Nz) c (20. sl([q]) = ql. sz([q]) = SZI ye. we 
have 

Tr*,f’([ql. p) = .f’o Jr;([ql, PI = ,f(Ki(P) . GlYl). 

where; = 1. 2.Hencerrrf([q]. ~)andn;f([q]. p)arerelatedbytheactionofsomeCi(g). 
Further, since rr is equivariant, rr* commutes with the unitary operation of U(R). Let AA 
and AZ be the Laplacians defined with respect to the two choices 71; and rr:. respectively. 
It is easy to check that Az(ls;f) = At(rr;,f). Thus the definition of A, is mdependent of 
the local choice of XI*. 

Such a Hamiltonian A, is precisely the one defined by the metric induced on M. By defn- 
ing the Laplacian on n*?(Q), the action of the Laplacian remains (locally) meaningful 
even on points in M - M* where the metric is degenerate. 

Forthesmoothinvariantfunctionson Q, C”(Q)“, theimagen*C?(Q)” is independent 
of the choice of local diffeomorphism, so that the important function space CX( Q(J)((), = 
n.*?(Q)“la,, = rr*C”(Q)“l~~ (defined in Sections 2.1) is irzd~penderr~ of the choice 
of the local diffeomorphism. 

We have now completed the construction of all the essential objects. The rest of the 
analysis in Sections 2.4 and 2.5 follows straightforwardly. 
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